Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 363
1.
Ann Lab Med ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38724225

Background: Facioscapulohumeral muscular dystrophy (FSHD) is a common form of muscular dystrophy that mainly affects skeletal muscle. FSHD1 accounts for 95% of all FSHD cases and can be diagnosed based on the pathogenic contraction of the D4Z4-repeat array on chromosome 4q35. Genetic diagnosis of FSHD1 is challenging because of the large size and repetitive nature of the D4Z4 region. We evaluated the clinical applicability of optical genome mapping (OGM) for the genetic diagnosis of FSHD1. Methods: We included 25 individuals with clinically confirmed or suspected/probable FSHD and their families. Ultra-high-molecular-weight DNA from peripheral blood was labeled, stained, and imaged using a single-molecule OGM platform (Bionano Genomics Saphyr system). D4Z4 repeat size and haplotype information were analyzed using the manufacturer's dedicated pipeline. We also compared the workflow and test time between Southern blot analysis and OGM. Results: We obtained concordant OGM and Southern blot results with 10 samples from patients with clinically confirmed FSHD. The D4Z4 repeat size differed within 1 unit between the Southern blot analysis and OGM. Among nine patients with clinically suspected or probable FSHD, six patients were confirmed to have pathogenic contractions by OGM. In our cohort, one de novo mosaic FSHD1 patient was successfully diagnosed with OGM. Moreover, OGM has a more straightforward and less time-consuming workflow than Southern blot analysis. Conclusions: OGM enables accurate and reliable detection of pathogenic contraction of the D4Z4-repeat array and is a valuable tool for the genetic diagnosis of FSHD1.

2.
Sci Rep ; 14(1): 7992, 2024 04 05.
Article En | MEDLINE | ID: mdl-38580676

Human epidermal growth factor receptor-2 (HER2)-targeting drugs are increasingly being incorporated into therapeutic paradigms for non-breast cancers, yet studies on HER2 expression in ovarian cancer (OC) are inadequate. Here, we studied the HER2 status and dynamic changes in OC by reviewing the records of patients who underwent HER2 testing at a single institution. Clinical parameters, including histology, BRCA status, and immunohistochemistry (IHC), were evaluated alongside HER2 expression, timing, and anatomical location. Among 200 patients, 28% and 6% exhibited expression scores of 2+ and 3+, respectively. HER2 3+ scores were observed in 23%, 11%, 9%, and 5% of mucinous, endometrioid, clear cell, and high-grade serous tumors, respectively, and were exclusively identified in BRCA-wildtype, mismatch repair-proficient, or PD-L1-low-expressing tumors. The TP53 mutation rate was low, whereas ARID1A, KRAS, and PIK3CA mutations were relatively more prevalent with HER2 scores of 2+ or 3+ than with 0 or 1+. Four of the five tumors with an HER2 3+ score exhibited ERBB2 amplification. Among 19 patients who underwent multiple time-lagged biopsies, 11 showed increased HER2 expression in subsequent biopsies. Patients with HER2-overexpressing OC exhibited distinct histological, IHC, and genomic profiles. HER2-targeting agents are potential options for BRCA-wildtype patients, particularly as later lines of treatment.


Ovarian Neoplasms , Receptor, ErbB-2 , Female , Humans , Mutation , Mutation Rate , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Receptor, ErbB-2/metabolism
3.
Cancer Sci ; 115(5): 1680-1687, 2024 May.
Article En | MEDLINE | ID: mdl-38475661

Most patients diagnosed with clear cell renal cell carcinoma (ccRCC) are also detected with small and organ-confined tumors, and the majority of these are classified as clinical tumor stage 1a (cT1a). A considerable proportion of patients with cT1 RCC shows tumor upstaging to pathological stage 3a (pT3a), and these patients have worse oncological outcomes. The role of circulating tumor DNA (ctDNA) in RCC has been limited to monitoring treatment response and resistance. Therefore, the present study aimed to evaluate the potential of ctDNA in predicting pT3a upstaging in cT1a ccRCC. We sequenced plasma samples preoperatively collected from 48 patients who had undergone partial nephrectomy for cT1a ccRCC using data from a prospective cohort RCC. The ctDNA were profiled and compared with clinicopathological ccRCC features to predict pT3a upstaging. Associations between ctDNA, tumor complexity, and pT3a upstaging were evaluated. Tumor complexity was assessed using the anatomical classification system. Univariate analysis used chi-squared and Student's t-tests; multivariate analysis considered significant factors from univariate analyses. Of the 48 patients with cT1a ccRCC, 12 (25%) were upstaged to pT3a, with ctDNA detected in 10 (20.8%), predominantly in patients with renal sinus fat invasion (SFI; n = 8). Among the pT3a group, ctDNA was detected in 75%, contrasting with only 2.8% in patients with pT1a (1/36). Detection of ctDNA was the only significant preoperative predictor of pT3a upstaging, especially in SFI. This study is the first to suggest ctDNA as a preoperative predictor of pT3a RCC upstaging from cT1a based on preoperative radiological images.


Carcinoma, Renal Cell , Circulating Tumor DNA , Kidney Neoplasms , Neoplasm Staging , Nephrectomy , Humans , Carcinoma, Renal Cell/surgery , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/blood , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Nephrectomy/methods , Female , Male , Kidney Neoplasms/surgery , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/blood , Middle Aged , Aged , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Prospective Studies , Adult , Aged, 80 and over
4.
Ann Lab Med ; 44(4): 324-334, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38433573

Background: Structural variants (SVs) are currently analyzed using a combination of conventional methods; however, this approach has limitations. Optical genome mapping (OGM), an emerging technology for detecting SVs using a single-molecule strategy, has the potential to replace conventional methods. We compared OGM with conventional diagnostic methods for detecting SVs in various hematologic malignancies. Methods: Residual bone marrow aspirates from 27 patients with hematologic malignancies in whom SVs were observed using conventional methods (chromosomal banding analysis, FISH, an RNA fusion panel, and reverse transcription PCR) were analyzed using OGM. The concordance between the OGM and conventional method results was evaluated. Results: OGM showed concordance in 63% (17/27) and partial concordance in 37% (10/27) of samples. OGM detected 76% (52/68) of the total SVs correctly (concordance rate for each type of SVs: aneuploidies, 83% [15/18]; balanced translocation, 80% [12/15] unbalanced translocation, 54% [7/13] deletions, 81% [13/16]; duplications, 100% [2/2] inversion 100% [1/1]; insertion, 100% [1/1]; marker chromosome, 0% [0/1]; isochromosome, 100% [1/1]). Sixteen discordant results were attributed to the involvement of centromeric/telomeric regions, detection sensitivity, and a low mapping rate and coverage. OGM identified additional SVs, including submicroscopic SVs and novel fusions, in five cases. Conclusions: OGM shows a high level of concordance with conventional diagnostic methods for the detection of SVs and can identify novel variants, suggesting its potential utility in enabling more comprehensive SV analysis in routine diagnostics of hematologic malignancies, although further studies and improvements are required.


Genome, Human , Genomic Structural Variation , Humans , Chromosome Inversion , Translocation, Genetic , Chromosome Mapping
5.
Front Oncol ; 14: 1365614, 2024.
Article En | MEDLINE | ID: mdl-38544839

Background: Aplastic anemia (AA), characterized by hematopoietic stem cell deficiency, can evolve into different hematologic malignancies. Our understanding of the genetic basis and mechanisms of this progression remains limited. Methods: We retrospectively studied 9 acquired AA patients who later developed hematologic malignancies. Data encompassed clinical, laboratory, karyotype, and next-generation sequencing (NGS) information. We explored chromosomal alterations and mutation profiles to uncover genetic changes underlying the transition. Results: Nine AA patients developed myelodysplastic syndrome (seven patients), acute myeloid leukemia (one patient), or chronic myelomonocytic leukemia (one patient). Among eight patients with karyotype results at secondary malignancy diagnosis, monosomy 7 was detected in three. Trisomy 1, der(1;7), del(6q), trisomy 8, and del(12p) were detected in one patient each. Among three patients with NGS results at secondary malignancy diagnosis, KMT2C mutation was detected in two patients. Acquisition of a PTPN11 mutation was observed in one patient who underwent follow-up NGS testing during progression from chronic myelomonocytic leukemia to acute myeloid leukemia. Conclusion: This study highlights the genetic dynamics in the progression from AA to hematologic malignancy. Monosomy 7's prevalence and the occurrence of PTPN11 mutations suggest predictive and prognostic significance. Clonal evolution underscores the complexity of disease progression.

6.
Leuk Res ; 138: 107456, 2024 03.
Article En | MEDLINE | ID: mdl-38442593

Incidence of both acute myeloid leukemia (AML) and cardiovascular disease (CVD) increases with age. We evaluated whether pre-existing CVD impacts clinical outcomes in AML. We retrospectively evaluated 291 consecutive adult AML patients treated at our institution, 2014-2020. Pretreatment comorbidities were identified by chart review. Outcomes included complete remission (CR) and CR with incomplete count recovery (CRi) rates, disease-free survival (DFS), overall survival (OS) and incidence of cardiovascular adverse events. CVD was present in 34% of patients at AML diagnosis. CVD patients had worse performance status (p=0.03) and more commonly had secondary AML (p=0.03) and received hypomethylating (HMA) agent-based therapy (72% vs 38%, p< 0.001). CVD (0.45 vs 0.71, p<0.001) and diabetes mellitus (HR= 0.24, 95% CI: 0.08 - 0.8, p= 0.01) were associated with lower probability of achieving CR/CRi. Accounting for age, performance status (PS), complex karyotype, secondary disease and treatment, CVD patients had shorter OS (HR=1.5, 95% CI: 1.1-2.2, p=0.002), with 1- and 3-year OS 44% vs 67% and 25% vs 40%, respectively, but there was no difference in cumulative incidence of relapse between patients with vs without CVD. Thus, CVD is an independent risk factor for lower response rate and shorter survival in AML patients.


Cardiovascular Diseases , Leukemia, Myeloid, Acute , Adult , Humans , Retrospective Studies , Cardiovascular Diseases/epidemiology , Remission Induction , Leukemia, Myeloid, Acute/drug therapy , Disease-Free Survival
7.
Blood Adv ; 8(6): 1487-1493, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38359363

ABSTRACT: ABO antigen weakness is rarely observed in ABO typing for transfusion. Hematologic diseases and associated gene mutations have been suggested as potential causes of this phenomenon, yet the precise etiology has not been elucidated. Through ABO typing and genetic analysis data conducted over 7 years, we have reconfirmed the association between ABO antigen weakness and hematologic diseases, especially acute myeloid leukemia (odds ratio [OR], 2.55; 95% confidence interval [CI], 1.12-5.83) and myelodysplastic syndrome (OR, 6.94; 95% CI, 2.86-16.83), and discovered previously unidentified candidate genes, CEBPA (OR, 43.70; 95% CI, 18.12-105.40), NRAS (OR, 3.37; 95% CI, 1.46-7.79), U2AF1 (OR, 8.12; 95% CI, 2.86-23.03), and PTPN11 (OR, 4.52; 95% CI, 1.51-13.50), seemingly associated with this phenomenon. Among these, CEBPA double mutations displayed a significant association, with ABO antigen weakness being observed in 20 of the 25 individuals (80.0%) possessing these mutations. From this study, new factors associated with ABO antigen weakness have been identified.


Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Leukemia, Myeloid, Acute/genetics , Mutation , CCAAT-Enhancer-Binding Proteins/genetics
8.
Sci Rep ; 14(1): 5055, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38424134

Radioactive materials were released into the ocean following the Fukushima Daiichi Nuclear Power Plant accident in 2011. Six years after the accident, the radioactive material concentration was markedly increased in the Okhotsk Intermediate Water (OIW) of the Sea of Okhotsk. This material may have been subjected to southward subsurface dispersal by the North Pacific Intermediate Water (NPIW), which originates from the OIW. The spatiotemporal limitations of available methods have made it challenging to track the dispersal paths of radioactive materials in the North Pacific Subpolar region. Here, we performed a tracer experiment using a three-dimensional numerical model to determine the path of 137Cs from Fukushima to the Sea of Okhotsk via surface subpolar gyre currents and subsurface dispersion by OIW and NPIW. The results showed that the 137Cs concentration in the Sea of Okhotsk increased via the surface current and moved progressively southward via OIW six years after the accident and eastward via OIW and NPIW nine years after the accident, indicating that 137Cs transported by NPIW entered the subtropical region. Based on experiments, this temporal change was mainly caused by ocean currents. Thus, subsurface recirculation of radioactive material via the OIW and NPIW should be considered based on the predicted path and travel time of additional materials released from the power plant.

9.
Nat Commun ; 15(1): 77, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38167486

Research on cultured meat has primarily focused on the mass proliferation or differentiation of muscle cells; thus, the food characteristics of cultured meat remain relatively underexplored. As the quality of meat is determined by its organoleptic properties, cultured meat with similar sensory characteristics to animal-derived meat is highly desirable. In this study, we control the organoleptic and nutritional properties of cultured meat by tailoring the 2D differentiation of primary bovine myoblasts and primary bovine adipose-derived mesenchymal stem cells on gelatin/alginate scaffolds with varying stiffness. We assess the effect of muscle and adipose differentiation quality on the sensory properties of cultured meat. Thereafter, we fabricate cultured meat with similar sensory profiles to that of conventional beef by assembling the muscle and adipose constructs composed of highly differentiated cells. We introduce a strategy to produce cultured meat with enriched food characteristics by regulating cell differentiation with scaffold engineering.


Mesenchymal Stem Cells , Tissue Scaffolds , Animals , Cattle , Cells, Cultured , In Vitro Meat , Cell Differentiation
10.
Ann Lab Med ; 44(3): 279-288, 2024 May 01.
Article En | MEDLINE | ID: mdl-38205526

Background: The mechanism and medical treatment target for degenerative aortic valve disease, including aortic stenosis, is not well studied. In this study, we investigated the effect of clonal hematopoiesis of indeterminate potential (CHIP) on the development of aortic valve sclerosis (AVS), a calcified aortic valve without significant stenosis. Methods: Participants with AVS (valves ≥2 mm thick, high echogenicity, and a peak transaortic velocity of <2.5 m/sec) and an age- and sex-matched control group were enrolled. Twenty-four CHIP genes with common variants in cardiovascular disease were used to generate a next-generation sequencing panel. The primary endpoint was the CHIP detection rate between the AVS and control groups. Inverse-probability treatment weighting (IPTW) analysis was performed to adjust for differences in baseline characteristics. Results: From April 2020 to April 2022, 187 participants (125 with AVS and 62 controls) were enrolled; the mean age was 72.6±8.5 yrs, and 54.5% were male. An average of 1.3 CHIP variants was observed. CHIP detection, defined by a variant allele frequency (VAF) of ≥0.5%, was similar between the groups. However, the AVS group had larger CHIP clones: 49 (39.2%) participants had a VAF of ≥1% (vs. 13 [21.0%] in the control group; P=0.020), and 25 (20.0%) had a VAF of ≥2% (vs. 4 [6.5%]; P=0.028). AVS is independently associated with a VAF of ≥1% (adjusted odds ratio: 2.44, 95% confidence interval: 1.11-5.36; P=0.027). This trend was concordant and clearer in the IPTW cohort. Conclusions: Participants with AVS more commonly had larger CHIP clones than age- and sex-matched controls. Further studies are warranted to identify causality between AVS and CHIP.


Aortic Valve Stenosis , Calcinosis , Humans , Male , Middle Aged , Aged , Aged, 80 and over , Female , Aortic Valve/diagnostic imaging , Aortic Valve/pathology , Clonal Hematopoiesis , Sclerosis/pathology , Aortic Valve Stenosis/diagnosis , Aortic Valve Stenosis/genetics , Aortic Valve Stenosis/pathology , Calcinosis/pathology
11.
Ann Lab Med ; 44(3): 195-209, 2024 May 01.
Article En | MEDLINE | ID: mdl-38221747

Circulating tumor DNA (ctDNA) has emerged as a promising tool for various clinical applications, including early diagnosis, therapeutic target identification, treatment response monitoring, prognosis evaluation, and minimal residual disease detection. Consequently, ctDNA assays have been incorporated into clinical practice. In this review, we offer an in-depth exploration of the clinical implementation of ctDNA assays. Notably, we examined existing evidence related to pre-analytical procedures, analytical components in current technologies, and result interpretation and reporting processes. The primary objective of this guidelines is to provide recommendations for the clinical utilization of ctDNA assays.


Circulating Tumor DNA , Humans , Circulating Tumor DNA/genetics , Biomarkers, Tumor/genetics , Prognosis , Neoplasm, Residual/genetics , Mutation , High-Throughput Nucleotide Sequencing
12.
Epilepsia ; 65(3): 766-778, 2024 Mar.
Article En | MEDLINE | ID: mdl-38073125

OBJECTIVE: We aimed to identify common genes and recurrent causative variants in a large group of Asian patients with different epilepsy syndromes and subgroups. METHODS: Patients with unexplained pediatric-onset epilepsy were identified from the in-house Severance Neurodevelopmental Disorders and Epilepsy Database. All patients underwent either exome sequencing or multigene panels from January 2017 to December 2019, at Severance Children's Hospital in Korea. Clinical data were extracted from the medical records. RESULTS: Of the 957 patients studied, 947 (99.0%) were Korean and 570 were male (59.6%). The median age at testing was 4.91 years (interquartile range, 1.53-9.39). The overall diagnostic yield was 32.4% (310/957). Clinical exome sequencing yielded a diagnostic rate of 36.9% (134/363), whereas the epilepsy panel yielded a diagnostic rate of 29.9% (170/569). Diagnostic yield differed across epilepsy syndromes. It was high in Dravet syndrome (87.2%, 41/47) and early infantile developmental epileptic encephalopathy (60.7%, 17/28), but low in West syndrome (21.8%, 34/156) and myoclonic-atonic epilepsy (4.8%, 1/21). The most frequently implicated genes were SCN1A (n = 49), STXBP1 (n = 15), SCN2A (n = 14), KCNQ2 (n = 13), CDKL5 (n = 11), CHD2 (n = 9), SLC2A1 (n = 9), PCDH19 (n = 8), MECP2 (n = 6), SCN8A (n = 6), and PRRT2 (n = 5). The recurrent genetic abnormalities included 15q11.2 deletion/duplication (n = 9), Xq28 duplication (n = 5), PRRT2 deletion (n = 4), MECP2 duplication (n = 3), SCN1A, c.2556+3A>T (n = 3), and 2q24.3 deletion (n = 3). SIGNIFICANCE: Here we present the results of a large-scale study conducted in East Asia, where we identified several common genes and recurrent variants that varied depending on specific epilepsy syndromes. The overall genetic landscape of the Asian population aligns with findings from other populations of varying ethnicities.


Epilepsies, Myoclonic , Epilepsy , Epileptic Syndromes , Spasms, Infantile , Child , Humans , Male , Child, Preschool , Female , Epilepsy/genetics , Epilepsy/diagnosis , Spasms, Infantile/genetics , Spasms, Infantile/diagnosis , Epilepsies, Myoclonic/genetics , Phenotype , Mutation , Protocadherins
13.
Cancer Res Treat ; 56(1): 314-323, 2024 Jan.
Article En | MEDLINE | ID: mdl-37475138

PURPOSE: We designed and evaluated the clinical performance of a plasma circulating tumor DNA (ctDNA) panel of 112 genes in various subtypes of lymphoma. MATERIALS AND METHODS: Targeted deep sequencing with an error-corrected algorithm was performed in ctDNA from plasma samples that were collected before treatment in 42 lymphoma patients. Blood buffy coat was utilized as a germline control. We evaluated the targeted gene panel using mutation detection concordance on the plasma samples with matched tissue samples analyzed the mutation profiles of the ctDNA. RESULTS: Next-generation sequencing analysis using matched tissue samples was available for 18 of the 42 patients. At least one mutation was detected in the majority of matched tissue biopsy samples (88.9%) and plasma samples (83.3%). A considerable number of mutations (40.4%) that were detected in the tissue samples were also found in the matched plasma samples. Majority of patients (21/42) were diffuse large B cell lymphoma patients. The overall detection rate of ctDNA in patients was 85.7% (36/42). The frequently mutated genes included PIM1, TET2, BCL2, KMT2D, KLHL6, HIST1H1E, and IRF8. A cutoff concentration (4,506 pg/mL) of ctDNA provided 88.9% sensitivity and 82.1% specificity to predict ctDNA mutation detection. The ctDNA concentration correlated with elevated lactate dehydrogenase level and the disease stage. CONCLUSION: Our design panel can detect many actionable gene mutations, including those at low frequency. Therefore, liquid biopsy can be applied clinically in the evaluation of lymphoma patients, especially in aggressive lymphoma patients.


Circulating Tumor DNA , Lymphoma , Humans , Circulating Tumor DNA/genetics , Liquid Biopsy , Mutation , Biomarkers, Tumor/genetics , High-Throughput Nucleotide Sequencing
14.
Cancer Res ; 84(3): 468-478, 2024 02 01.
Article En | MEDLINE | ID: mdl-38038965

Circulating tumor DNA (ctDNA) may aid in personalizing ovarian cancer therapeutic options. Here, we aimed to assess the clinical utility of serial ctDNA testing using tumor-naïve, small-sized next-generation sequencing (NGS) panels. A total of 296 patients, including 201 with ovarian cancer and 95 with benign or borderline disease, were enrolled. Samples were collected at baseline (initial diagnosis or surgery) and every 3 months after that, resulting in a total of 811 blood samples. Patients received adjuvant therapy based on the current standard of care. Cell-free DNA was extracted and sequenced using an NGS panel of 9 genes: TP53, BRCA1, BRCA2, ARID1A, CCNE1, KRAS, MYC, PIK3CA, and PTEN. Pathogenic somatic mutations were identified in 69.2% (139/201) of patients with ovarian cancer at baseline but not in those with benign or borderline disease. Detection of ctDNA at baseline and/or at 6 months follow-up was predictive of progression-free survival (PFS). PFS was significantly poorer in patients with detectable pathogenic mutations at baseline that persisted at follow-up than in patients that converted from having detectable ctDNA at baseline to being undetectable at follow-up; survival did not differ between patients without pathogenic ctDNA mutations in baseline or follow-up samples and those that converted from ctDNA positive to negative. Disease recurrence was also detected earlier with ctDNA than with conventional radiologic assessment or CA125 monitoring. These findings demonstrate that serial ctDNA testing could effectively monitor patients and detect minimal residual disease, facilitating early detection of disease progression and tailoring of adjuvant therapies for ovarian cancer treatment. SIGNIFICANCE: In ovarian cancer, serial circulating tumor DNA testing is a highly predictive marker of patient survival, with a significantly improved recurrence detection lead time compared with conventional monitoring tools.


Circulating Tumor DNA , Ovarian Neoplasms , Humans , Female , Circulating Tumor DNA/genetics , Neoplasm, Residual/diagnosis , Neoplasm, Residual/genetics , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Ovarian Neoplasms/genetics , High-Throughput Nucleotide Sequencing , Biomarkers, Tumor/genetics , Mutation
15.
Ann Lab Med ; 44(4): 335-342, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38145892

Background: The three best-known NUP214 rearrangements found in leukemia (SET:: NUP214, NUP214::ABL1, and DEK::NUP214) are associated with treatment resistance and poor prognosis. Mouse experiments have shown that NUP214 rearrangements alone are insufficient for leukemogenesis; therefore, the identification of concurrent mutations is important for accurate assessment and tailored patient management. Here, we characterized the demographic characteristics and concurrent mutations in patients harboring NUP214 rearrangements. Methods: To identify patients with NUP214 rearrangements, RNA-sequencing results of diagnostic bone marrow aspirates were retrospectively studied. Concurrent targeted next-generation sequencing results, patient demographics, karyotypes, and flow cytometry information were also reviewed. Results: In total, 11 patients harboring NUP214 rearrangements were identified, among whom four had SET::NUP214, three had DEK::NUP214, and four had NUP214::ABL1. All DEK::NUP214-positive patients were diagnosed as having AML. In patients carrying SET::NUP214 and NUP214::ABL1, T-lymphoblastic leukemia was the most common diagnosis (50%, 4/8). Concurrent gene mutations were found in all cases. PFH6 mutations were the most common (45.5%, 5/11), followed by WT1 (27.3%, 3/11), NOTCH1 (27.3%, 3/11), FLT3-internal tandem duplication (27.3%, 3/11), NRAS (18.2%, 2/11), and EZH2 (18.2%, 2/11) mutations. Two patients represented the second and third reported cases of NUP214::ABL1-positive AML. Conclusions: We examined the characteristics and concurrent test results, including gene mutations, of 11 leukemia patients with NUP214 rearrangement. We hope that the elucidation of the context in which they occurred will aid future research on tailored monitoring and treatment.


Leukemia, Myeloid, Acute , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Animals , Mice , Nuclear Pore Complex Proteins/genetics , Retrospective Studies , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics
16.
Invest Ophthalmol Vis Sci ; 64(14): 27, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37975847

Purpose: To determine the diagnostic potential of next-generation sequencing (NGS) in vitreous samples, analyze genotype-phenotype characteristics, and compare NGS of matched vitreous and brain samples in patients with associated central nervous system lymphoma (CNSL). Methods: A total of 32 patients suspected of vitreoretinal lymphoma (VRL) who underwent diagnostic vitrectomy and NGS were included in this retrospective observational case-series. Fresh vitreous specimens from diagnostic vitrectomy of VRL-suspected patients underwent NGS using a custom panel targeting 747 candidate genes for lymphoma. They also underwent malignancy cytology, interleukin (IL)-10/IL-6, immunoglobulin heavy chain (IGH)/immunoglobulin kappa light chain (IGK) monoclonality testing. MYD88 L265P mutation was examined from anterior chamber tap samples. The diagnosis of VRL was made based on typical clinical characteristics for VRL, as well as malignant cytology, IGH/IGK clonality, or IL-10/IL-6 > 1. Sensitivity and specificity of NGS were compared with conventional diagnostic tests. Brain tissues suspected of lymphoma were collected by stereotactic biopsy and underwent NGS. Genetic variations detected in NGS of vitreous and brain tissue specimens were compared. Results: The sensitivity values for cytology, IL-10/IL-6 > 1, clonality assays for IGH and IGK, MYD88 L265P detection in anterior chamber tap samples, and vitreous NGS were 0.23, 0.83, 0.68, 0.79, 0.67, and 0.85, with specificity values of 1.00, 0.83, 0.50, 0.25, 0.83, and 0.83, respectively. The sensitivity (0.85) of vitreous NGS was the highest compared to other conventional diagnostic tests for VRL. The most common mutations were MYD88 (91%), CDKN2A (36%), PIM1 (32%), IGLL5 (27%), and ETV6 (23%). Although several gene alterations demonstrated heterogeneity between the brain and eyes, some common mutational profiles were observed in matched vitreous and brain samples. Conclusions: Overall, NGS of the vitreous demonstrated high sensitivity among conventional diagnostic tests. VRL and CNSL appeared to have both shared and distinct genetic variations, which may suggest site-specific variations from a common origin.


Lymphoma , Retinal Neoplasms , Humans , Vitreous Body/pathology , Retinal Neoplasms/diagnosis , Retinal Neoplasms/genetics , Retinal Neoplasms/pathology , Retrospective Studies , Interleukin-6/genetics , Interleukin-10/genetics , Myeloid Differentiation Factor 88 , Biopsy , Lymphoma/diagnosis , Lymphoma/pathology , Liquid Biopsy , High-Throughput Nucleotide Sequencing , Phenotype , Genotype
17.
Materials (Basel) ; 16(21)2023 Oct 26.
Article En | MEDLINE | ID: mdl-37959477

The development of high-performance concrete using carbon nanotubes (CNTs), which is used in various industries owing to its excellent mechanical properties, has attracted much attention, leading to ongoing research in this area. However, when mixing CNTs into cement paste, there has been limited focus on the dispersibility, and, in most cases, aqueous dispersions of CNTs used in other industrial sectors are used. Because CNTs form the structures of bundles or aggregates owing to their high aspect ratio and van der Waals force between particles, the desired dispersibility cannot be obtained when mixing CNTs in powder form with other materials. Therefore, in this study, we examined the applicability of CNT aqueous dispersions using PC-based plasticizer used in concrete. Aqueous dispersions of CNT using PC-based surfactants are prepared and their properties are compared with those of a PVP-based aqueous dispersion. To analyze the mechanical properties, the compressive strength and flexural strength are measured on the 28th day. Then, the dispersibility and microstructure are analyzed using scanning electron microscopy image analysis, thermogravimetric analysis, and BET (Brunauer-Emmett-Teller) analysis. The analysis results show the enhancement of mechanical properties due to the mixing of the CNT dispersion, and the results confirm the applicability of the proposed CNT aqueous dispersions using PC-based surfactants.

18.
Anticancer Res ; 43(10): 4373-4377, 2023 10.
Article En | MEDLINE | ID: mdl-37772572

BACKGROUND/AIM: We report an in vitro three-dimensional (3D) culture system optimized for the growth of HepG2 hepatocarcinoma cells. MATERIALS AND METHODS: The 3D culture system was fabricated based on polyethylene glycol (PEG)-based hydrogels; their mechanical strength was controlled by differences in the arm number and concentration of PEG-vinylsulfone. Moreover, cellular growth was evaluated after culturing HepG2 cells in PEG-based hydrogels with various mechanical strengths. RESULTS: HepG2 cell culture in the 3D PEG-based hydrogels induced the formation of spherical colonies. Moreover, the highest number of spherical colonies formed from HepG2 cells at the single-cell level, and the formation of spherical colonies with a uniform size was observed in HepG2 cells cultured in 5% (w/v) 8-arm PEG-based hydrogels. CONCLUSION: 5% (w/v) 8-arm PEG-based hydrogels may be developed as a 3D culture system optimized for stimulating the in vitro growth of HepG2 cells.


Hydrogels , Polyethylene Glycols , Humans , Polyethylene Glycols/pharmacology , Hep G2 Cells , Hydrogels/pharmacology , Cell Line , Cell Culture Techniques/methods , Biocompatible Materials
19.
BMC Med Genomics ; 16(1): 215, 2023 09 11.
Article En | MEDLINE | ID: mdl-37697358

BACKGROUND: Hereditary hemolytic anemia (HHA) refers to a heterogeneous group of genetic disorders that share one common feature: destruction of circulating red blood cells (RBCs). The destruction of RBCs may be due to membranopathies, enzymopathies, or hemoglobinopathies. Because these are genetic disorders, incorporation of next-generation sequencing (NGS) has facilitated the diagnostic process of HHA. METHOD: Genetic data from 29 patients with suspected hereditary anemia in a tertiary hospital were retrospectively reviewed to evaluate the efficacy of NGS on hereditary anemia diagnosis. Targeted NGS was performed with custom probes for 497 genes associated with hematologic disorders. After genomic DNA was extracted from peripheral blood, prepared libraries were hybridized with capture probes and sequenced using NextSeq 550Dx (Illumina, San Diego, CA, USA). RESULT: Among the 29 patients, ANK1 variants were detected in five, four of which were pathogenic or likely pathogenic variants. SPTB variants were detected in six patients, five of which were classified as pathogenic or likely pathogenic variants. We detected g6pd pathogenic and spta1 likely pathogenic variants in two patients and one patient, respectively. Whole-gene deletions in both HBA1 and HBA2 were detected in two patients, while only HBA2 deletion was detected in one patient. One likely pathogenic variant in PLKR was detected in one patient, and one likely pathogenic variant in ALAS2 was detected in another. CONCLUSION: Here, NGS played a critical role in definitive diagnosis in 18 out of 29 patients (62.07%) with suspected HHA. Thus, its incorporation into the diagnostic workflow is crucial.


Anemia, Hemolytic, Congenital , Humans , Child , Retrospective Studies , Anemia, Hemolytic, Congenital/diagnosis , Anemia, Hemolytic, Congenital/genetics , Erythrocytes , High-Throughput Nucleotide Sequencing , Cytoskeletal Proteins , 5-Aminolevulinate Synthetase
20.
Cancers (Basel) ; 15(15)2023 Aug 07.
Article En | MEDLINE | ID: mdl-37568814

The positivity rate of circulating tumor DNA (ctDNA) next-generation sequencing (NGS) varies among patients with metastatic prostate cancer (mPC), complicating its incorporation into regular practice. This retrospective study analyzed the ctDNA sequencing results of 100 mPC patients from May 2021 to March 2023 to identify the factors associated with positive ctDNA. Three custom gene panels were used for sequencing. Overall, 63% of the patients exhibited tier I/II somatic alterations, while 12% had pathogenic/likely pathogenic germline alterations. The key genes that were altered included AR, TP53, RB1, PTEN, and APC. Mutations in BRCA1/2, either germline or somatic, were observed in 21% of the patients. Among the metastatic castration-resistant prostate cancer (mCRPC) patients, the ctDNA-positive samples generally showed higher median prostate-specific antigen (PSA) levels and were more likely to be at the radiographic and clinical progressive disease stages, although they were not significantly associated with PSA progression. Our results suggest that ctDNA analysis could detect meaningful genetic changes in mPC patients, especially during disease progression.

...